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Abstract We present an extensive analysis of the self-consistent extended Hückel
theory (SC-EHT) and discuss the possibilities of constructing accurate and efficient
semiempirical methods on its basis. We describe the mapping approach to derive a
self-consistency correction to the effective 1-electron Hamiltonian (Fock) operator
that is utilized in electronic structure calculations and that variationally minimizes the
total energy in the SC-EHT method. We show that the SC-EHT Hamiltonian can play
the role of the 1-electron operator by definition, in which case no self-consistency
correction is needed. Then, the SC-EHT method can be derived from the Hartree–
Fock theory by approximation of the Fock matrix. Therefore, the SC-EHT based
methods have rigorous foundations that may be utilized to develop a family of suc-
cessively accurate model Hamiltonians. We analyze the underlying approximation
and discuss it in the light of existing formulations of the EHT method. We indicate
two major deficiencies of the existing formulations of the EHT method—neglect of
exchange integrals and incorrect asymptotic behavior of the Coulomb integrals. The
SC-EHT is compared to the charge equilibration scheme and to the DFTB family of
approximations. We show that an improved version of the SC-EHT method can be
connected to both of them, indicating relation of the SC-EHT derived approxima-
tions to the fundamental DFT origins and their potential for efficient computations on
large-scale systems.
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1 Introduction

The extended Hückel theory [1–3] (EHT) has a long history of development and
application to various types of systems [4–8]. In the beginning of the computational
chemistry era it was among the most successful yet computationally efficient and
physically transparent models of molecular interactions. With the advent of efficient
computers, the interest to the EHT method gradually declined, because computations
of relatively small molecules could be performed at a higher level of theory in reason-
able computational time. Still, the EHT method keeps attracting researchers, mainly
because of its great computational efficiency—when relatively large systems [9] are to
be studied or when one is interested in time evolution of electronic states of large-scale
systems [10–16].

In the modern time the EHT approach in its original formulation or in a slightly
modified form is utilized for studying electron transport (conductivity) [17–22], pho-
toinduced electron transfer [10–16], electronic structure and magnetic properties of
inorganic materials [21,23–26], as well as enthalpies of formation and interaction
energies of organic molecules [27–30]. Applicability of the EHT method is particu-
larly advantageous for systems with metal atoms, especially heavy ones. Treatment
of such species at the density functional theory (DFT) or ab initio levels requires suit-
able atomic pseudopotentials and proper handling of relativistic effects. Both types
of complications are easily overcome by a suitable parameterization within the EHT
formulation [8]. The EHT Hamiltonian has been used as the basic framework for time-
dependent tight-binding calculations of molecular excited states [31] and electronic
resonances [32]. In further discussion, we will show that the EHT-type Hamiltonians
that include self-consistent charges are closely related to the popular tight-binding DFT
(DFTB) method. Some degree of similarity can be found with the phenomenological
Anderson–Newns Hamiltonian or the more elaborate Hubbard and DFT+U Hamil-
tonians. Generalizations of the EHT to periodic systems [7,17,33] (with inclusion
of crystal momentum quantum numbers) and to unrestricted formulations, in which
dependence on electronic spin polarization in included [33], have been developed.
Therefore, the EHT approach has a potential as an efficient method that can be applied
to large systems and to processes that involve not only charge transfer, but also spin
polarization and spin relaxation dynamics.

The original EHT formulation was proposed as a non-iterative approach based on
diagonalization of a simple tight-binding Hamiltonian, to account for covalent chem-
ical bonding. Later, it was recognized that such an approach predicted wrong equi-
librium geometries [34,35] and could not properly describe charge-transfer processes
[36,37], especially in ionic crystals [38]. The former problem was solved by introduc-
ing properly parameterized and tuned nuclear repulsion terms and electron-nuclear
attraction energy terms [27,34,35,39–41]. To improve accuracy of the computations
of charge-transfer related properties, a simple correction to the original Hamiltonian
was introduced via charge-dependent ionization potentials [8,33,36–38,42], rooting
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back to the work proposed by Harris [43,44]. As a complication, solution of the
resulting equations must be obtained iteratively, until self-consistently is achieved,
because the Hamiltonian depends on the charge distribution, and the charge distri-
bution depends on the Hamiltonian. The resulting method is known as the iterative
EHT (IEHT), or self-consistent EHT (SC-EHT). It is worth saying that a non-iterative
scheme for description of charge transfer effects exists [45]. The method starts with
the conventional EHT Hamiltonian and a single-determinant wavefunction. Various
excited configurations are then created, following the standard configuration interac-
tion (CI) philosophy. Unlike the standard technique, the CI coefficients are obtained
via a predefined formula rather than from the diagonalization of the CI matrix. This
technique allows one to accelerate calculations, to avoid problems that appear in SCF
iterations (divergences, etc.), and explicitly account for multi-configurational nature
of some processes. However, a judicious choice of parameters is required and the
parameters may not always be transferrable.

In the early works, the SC-EHT Hamiltonian was used directly to reach the self-
consistency and to obtain converged solutions [8,46]. This approach led to slow
convergence and unstable charge fluctuations during the iterative process. Elabo-
rate workaround schemes were proposed to help converging this process [8]. The
workaround technique was criticized by Mukherjee [37], who argued that the conver-
gence was in error, since the use of the charge-corrected EHT Hamiltonian for obtain-
ing wavefunctions and 1-electron energy levels was not consistent with the variational
principle. Additional modifications to the EHT Hamiltonian were needed to satisfy
the variational principle. Several authors derived such corrections via density matrix
variation [37,42]. However, the results are not always clear and systematic. In addi-
tion, the application of the direct variational procedure is mathematically elaborate,
especially if a complicated form of the charge-dependent matrix elements is consid-
ered. A general derivation of the effective Hamiltonian corresponding to an arbitrary
potential was reported by Sanhueza et al. [47] Nonetheless, although the utilization of
the variational principle by itself does not raise questions, the relation of the resulting
approximations to the established ab initio methods remains obscure.

Rather similar to the SC-EHT, the self-consistent charge tight-binding density func-
tional theory (SCC-DFTB) was derived directly from the DFT [48–51]. The rigorous
relation to the fundamental DFT is one of the reasons of the SCC-DFT popularity.
Because of this heritage, a hierarchy of increasingly accurate approximations can be
made, illustrating the history of development of the DFTB family of methods. How-
ever, no derivation of the SC-EHT from the wavefunction theory was presented so
far. The lack of connection to rigorous theories, such as Hartree–Fock (HF), may be
the reason why the EHT method and its derivatives have not gained much popularity
as a computational tool. On the contrary, semiempirical methods rooted in rigorous
HF theory, such as MNDO [52,53] or ZINDO [54,55], gained significantly greater
interest and respect.

Successful results in different aspects of simulations [7,8,17,27,28,34,42,56] and
high computational efficiency make the EHT-based methods attractive candidates for
further improvement and systematization. In this regard, it is important to understand
the roots of the SC-EHT and establish its connection to the ab initio wavefunction
theory. This connection would not only justify the EHT as a semiempircial method
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derived from the HF theory, but it would also have immediate practical value. First,
it would present a simple way of constructing a proper effective Hamiltonian matrix
that is to be used in the eigenvalue problem. Specifically, we address the questions
raised by Mukherjee regarding the need for a proper self-consistency correction [37].
We find that this correction may be needed, but the methods without such a correction
are valid, and the difference resides mostly in interpretation. We also present a simple
way of deriving the Mukherjee-type correction. Second, the connection would clarify
the approximations made in transition from the reference wavefunction theory (HF) to
the EHT-based models, and hence, can suggest further ways of improving the quality
of subsequent refinements of the SC-EHT formulation, potentially leading to a family
of new semiempirical methods with systematically increased accuracy, similarly to
the DFTB family.

In this work, we present the connection between the SC-EHT method and the
HF theory. We start by introducing notation and revising a few related techniques.
We then analyze the variational HF theory and present the approximation that maps
the HF theory into the SC-EHT method. In this way, we always know the proper
effective Hamiltonian for the SCF iterative process—the Fock matrix. One can then
relate an arbitrary EHT Hamiltonian to the Fock matrix, to ensure that the solution
of the SC-EHT is variationally consistent. Further, we analyze the approximations
that reduce the HF theory to the SC-EHT and suggest possible ways of improving
the approximations. Finally, we discuss similarities of the SC-EHT and its derivatives
with the charge equilibration scheme and DFTB-based methods.

2 Overview of the EHT method

EHT is the molecular orbital (MO) method. According to it, each MO, |ψi 〉, is
represented by a linear combination of atomic orbitals (AOs), |χa〉:

|ψi 〉 =
∑

a

Cai |χa〉, (2.1)

where Cai is the coefficient of the ath AO in the expansion of the ith MO.
In the original formulation of Hoffmann [1], the matrix elements of the EHT Hamil-

tonian, H , are charge-independent, and they are computed in the AO basis as:

Hi j = 1

2
Ki j Si j (hi + h j ), (2.2)

where Ki j is the proportionality constant, typically assumed to be in range between
1 and 2, and, in general, dependent on the type of orbitals i and j . For the diagonal
elements this constant is set to 1, Kii = 1, while for all other pairs of orbital types
Ki j , i �= j it is treated as an adjustable parameter. In many cases it is customary to set
this parameter to the constant value 1.75 for all types of orbital pairs. The parameter
Si j is the overlap integral in the AO basis:

Si j = 〈χa |χb〉. (2.3)
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The parameter hi entering Eq. (2.2) is the energy of i th orbital of an isolated atom.
These parameters are typically available from X-ray spectroscopy measurements as
the orbital binding energies, also known as valence state ionization potentials (VSIPs),

hi = h0
i = −VSIPi , (2.4)

but can also be treated as adjustable parameters.
In the EHT method, the AOs |χa〉 are typically taken to be of the form of either

single-exponent Slater-type orbitals (STOs):

|χa〉 = N exp(−ξr), (2.5a)

or double-zeta STOs:

|χa〉 = c1 N1 exp(−ξ1r)+ c2 N2 exp(−ξ2r). (2.5b)

The numbers N , N1, N2 are the normalization coefficients, c1, c2 are the liner com-
bination coefficients and ξ, ξ1, ξ2 are the orbital exponents. The latter are typically
available from ab initio calculations of electronic structure of isolated atoms [57–59]
or can be treated as adjustable parameters [7,17]. The overlap integrals in Eq. (2.3)
are first computed in the coordinate system in which one of the axes is parallel to
direction connecting the pair of atomic centers on which the orbitals are located. The
formulae for computing these integrals are available from different authors [60,61].
The computed quantities are then rotated back to the molecular coordinate system. To
avoid complications and to facilitate the calculations of derivatives and other molecu-
lar integrals, one can utilize the representation of the STOs as the linear superposition
of n Gaussian type orbitals (STO-nGTO, STO-nG):

N1 exp(−ξ1r) =
n∑

j=1

c j exp(−ξ̃i j r
2). (2.6)

In general, more elaborate expressions of the EHT Hamiltonian matrix elements can
be utilized. They were shown to produce superior accuracy or can correct unnatural
behavior of the simple formula Eq. (2.2) that is encountered under certain circum-
stances. Among the most notable examples are the weighted Wolfsberg-Helmholz
formula [2]:

Hi j = 1

2

[
Ki j +�2 +�4(1 − Ki j )

]
Si j (hi + h j ), (2.7a)

� = hi − h j

hi + h j
, (2.7b)

the Calzaferri formula [34,56]:

Hi j = 1

2
[1 + κi j exp[−δ(Ri j − Ri j,0)]]Si j (hi + h j ). (2.8)
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Different dependencies of the Hamiltonian matrix elements on the atomic overlaps
had also been considered. Notable are the simple Wolfsberg-Helmholz formula [62]:

Hi j = 1

2
Si j (hi + h j ), (2.9)

Cusachs formula [63],

Hi j = 1

2
Si j (2 − |Si j |)(hi + h j ), (2.10)

and exsin formula [42]:

Hi j = sgn(Si j )
1

2
{(1 + |Si j |)[1 + c sin(π |Si j |) exp(b|Si j |)] − 1}

×(hi + h j ), (2.11a)

b = −π cot(π |Sm |), (2.11b)

with c and Sm being parameters.
Despite different performance and effects accounted for by the above formulations,

in all cases the EHT Hamiltonian is independent of the wavefunctions (charge density).
It is under this assumption the variational principle yields the well-known secular
equation:

HC = SCε, (2.12)

with the EHT Hamiltonian, H , being also the effective 1-electron Hamiltonian (Fock)
operator that enters the Eq. (2.12). The total energy of the system in this case is given
by the sum of occupied orbital energies

E = 2
∑

i∈occ

εi = tr(H T P) =
∑

a,b

Hab Pab, (2.13a)

or, more generally:

E =
∑

i∈occα

εαi +
∑

i∈occβ

ε
β
i = tr(H T Pα)+ tr(H T Pβ)

=
∑

a,b

Hab Pαab +
∑

a,b

Hab Pβab, (2.13b)

where P, Pα and Pβ are the density matrices (total, spin-up, and spin-down,
respectively):

Pαab =
∑

i∈occα

Cα
ai C

α
bi = (CαOα(Cα)T )ab ⇔ Pα = CαOα(Cα)T , (2.14a)
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Pβab =
∑

i∈occβ

Cβ
ai C

β
bi = (CβOβ(Cβ)T )ab ⇔ Pβ = CβOβ(Cβ)T , (2.14b)

P = Pα + Pβ. (2.14c)

The matrices of the MO coefficients, Cα and Cβ are organized such that i th column
contains MO-LCAO coefficients of i th MO. The matrices Oα and Oβ are the density
matrices in the MO basis, also known as the population matrices. These are the diagonal
matrices with the first Nα and Nβ diagonal elements set to 1.0, where Nα and Nβ are
the numbers of spin-up and spin-down electrons, respectively.

3 Self-consistent EHT

In the simplest SC-EHT approach, the parameters hi are modified according to:

hi = h0
i − ai qI , (3.1)

where ai is an adjustable parameter, and qI is the partial charge of atom I , the atom
on which i th AO is localized. Typically Mulliken charges [64] are used:

qI = Z I −
∑

a∈I

na, (3.2)

where the summation runs over all AOs (index a) localized on a given atom (index I )
and

na =
∑

b

(
Pαab + Pβab

)
Sab, (3.3)

is the total Mulliken population on the orbital a. The off-diagonal matrix elements of
the EHT Hamiltonian are typically computed according to the standard rule, Eq. (2.2),
using charge-corrected parameters hi . In principle, one may utilize one of the expres-
sions Eqs. (2.7)–(2.11) together with the charge-dependent orbital energy parameters,
Eq. (3.1).

The dependence of electronic Hamiltonian on charge density via Mulliken charges,
Eq. (3.2), is perhaps one of the simplest treatments of self-consistent electrostatics in
electronic structure calculations. Other similar schemes are represented by early semi-
empirical [65–71] or mixed quantum mechanics/molecular mechanics (QM/MM) [72]
approaches. While the semiempirical formulations often originate directly from the
Hartree–Fock method, the QM/MM is substantially guided by an accurate description
of electrostatic and polarization effects between different parts of a system. Although
disregarding some quantum effects and relying on the classical picture of interactions,
the approach proved to be extremely successful. Transparent and efficient, it granted
the authors the Nobel prize award in 2013.

Equation (3.1) implies that the excess of electron charge density (negative charge)
on a given atom pushes the energy levels of atomic states toward more positive values
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Fig. 1 Definition of the orbital-resolved (a) and atom-resolved (b) slope parameters a for different number
of electrons, N. The number N corresponds to the reference value (e.g. number of electrons in isolated
atom). The orbital energy levels in panel (a) are adjusted according to EHT definition. The atom energies
in panel (b) are according to standard chemical definition of IP and EA. Note the IP and EA values used in
the two panels have different meaning

and makes the ionization potential smaller. Consider two limiting situations—mono-
charged cation and anion (Fig. 1a).

Then the energies can be approximated by:

− IP2 = −IP+ = hi (+1) = h0
i − ai , (3.4a)

−EA = −IP− = hi (−1) = h0
i + ai , (3.4b)

or

ai =
{

IP2 − IP1 q < 0
IP1 − EA q > 0

. (3.5)

where IP2 is the second ionization potential for a given atom and EA is its electron
affinity. As it follows from Eq. (3.5) and Fig. 1, the slope parameter ai , which is
essentially the energy derivative with respect to the number of electrons (or charge),
ai = ∂E

∂N , is a discontinuous function of the atomic charge. This is the result well known
in both wavefunction theory and DFT. It originates from the differences in exchange
integrals for systems with different number of electrons. The derivative discontinuity
is a cornerstone of many DFT formulations, the problem which is often very hard to
account for in a systematic way. In the context of the DFT, the attempts to account
for this effect led to approaches known as “scissor operator” method [73,74]. In the
context of the SC-EHT method, the derivative discontinuity can easily be incorporated
via Eq. (3.5). In most SC-EHT formulations, the importance of the incorporation of
the derivative discontinuities was not explicitly recognized and the same value of slope
parameters was typically used for positive and negative charges, mainly for the sake
of simplicity. We anticipate that incorporation of the charge-dependent slopes may
lead to new interesting effects, especially when the electron transfer and electronic
excitations are of concern.
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Unlike Eq. (3.1), some formulations of the SC-EHT method involve dependence
of the atomic orbital energies for i th orbital, hi , on the fluctuation of its population:

hi = h0
i − aiδni , (3.6a)

where

δni = ni − n̄i , (3.6b)

is the fluctuation of the population on the orbital i with respect to atomic limit or other
reference value n̄i . Higher order polynomials in δni were also considered in early
works [8]:

hi = h0
i − aiδni + biδn

2
i . (3.7)

We want to emphasize that under the approximations given by Eqs. (3.6)–(3.7), the
Hamiltonian is not rotationally invariant. Therefore, these approximations should not
be used, even despite their higher flexibility for parameterization. It is easy to illustrate
by a simple example why one should avoid such formulae. Suppose the values of the
parameters {ai } and, potentially, {bi } are fixed. Depending on initial guess of the
atomic orbitals, one can obtain different values of the reference populations, n̄i . A
simple example is the carbon atom. Its valence configuration, 2s22p2, implies that
if the initial guess is chosen as a set of atomic orbitals 2s, 2px, 2py and 2pz, the
atomic limit of population on one of the 2p orbitals would be zero (if no smearing
of MO populations is utilized). However, one could start with four sp3 hybrids, each
of which would have non-negligible projection (population) on any of the atomic
orbitals. Therefore, the fluctuations δni depend on initial guess of orbitals, and on a
specific choice of orbital directions, which can vary along all subsequent iterations. The
dependence of the Hamiltonian matrix elements on the choice of coordinate system is
undesirable property—apart from being physically incorrect, it may lead to numerical
instabilities and poor convergence.

In contrast to Eqs. (3.6)–(3.7), if the charges in Eq. (3.1) are chosen to be atomic
partial charges that are rotationally invariant, for example Mulliken charges, Eqs. (3.2)–
(3.3), the rotational invariance of the charge-corrected Hamiltonian is preserved at all
times. Despite the absence of rotational invariance, a number of researchers utilized
the orbital-resolved populations to construct charge-corrected EHT Hamiltonians. One
should then be careful when transferring the parameters {ai } and, potentially, {bi }
obtained in those works onto the parameters used with Mulliken charges. It is reason-
able to expect that the magnitude of the fluctuation δni for any given orbital i is smaller
than the total Mulliken charge on the atom containing this orbital. Therefore, the para-
meters obtained for δni should be scaled down to smaller numbers, approximately by
the number of valence orbitals considered in atomic calculations. Utilization of the
quadratic polynomials in δni also leads to large slope parameters. Finally, in some
works the net rather than the gross Mulliken atomic or orbital charges are utilized.
As it will become clear in the following sections, the choice of net populations is
non-natural, although one could argue on its clear physical interpretation. Because
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these charges are not rotationally invariant, we discourage one from using them in
charge-corrected Hamiltonians.

At this point, we should comment on the construction of the charge-dependent
Hamiltonian matrix elements. The main condition for the definition Eq. (3.1) to be
physically justified is the requirement that the charge-dependent proportionality fac-
tor be rotationally invariant. This condition is satisfied for the Mulliken charges and
is violated for the orbital-resolved quantities, Eq. (3.6). At the same time, Mulliken
decomposition of the charge density is one of infinitely many proper (rotationally
invariant) schemes. Thus, we anticipate that this flexibility may be used to construct
more accurate and computationally efficient charge-dependent functionals for com-
puting Hamiltonian matrix elements via charge-dependent ionization potentials.

4 SC-EHT equations via direct variation of charge density

In this section we show how the charge-corrected EHT Hamiltonian should be modified
to satisfy the variational principle. Starting with the EHT energy expression, Eq. (2.13),
we consider its first-order variation with respect to all density matrix elements:

δE = E(P + δP)− E(P) =
∑

a,b

HabδPαab +
∑

a,b

HabδPβab

+
∑

a,b

δHab Pαab +
∑

a,b

δHab Pβab. (4.1)

Because the variations of spin-up and spin-down densities are independent, we
consider each of them separately, so:

δEσ =
∑

a,b

HabδPσab +
∑

a,b

δHσ
ab Pab, σ = α, β. (4.2)

From Eqs. (2.2) and (3.1) we have:

Hi j = 1

2
Ki j Si j (hi + h j ) = 1

2
Ki j Si j

(
h0

i + h0
j

)

− 1

2
Ki j Si j (ai Z I + a j Z J )+ 1

2
Ki j Si j (ai nI + a j n J ). (4.3)

The variation of the Hamiltonian matrix element is:

δHσ
i j = 1

2
Ki j Si j

(
aiδn

σ
I + a j n

σ
J

)
. (4.4)

Using the definition of atomic population and the definition of Mulliken orbital
populations, Eq. (3.3), we obtain:

nI =
∑

a∈I

na =
∑

a∈I

∑

b

(
Pαab + Pβab

)
Sab =

∑

a,b

(
Pαab + Pβab

)
SabδaI
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= 1

2

∑

a,b

(
Pαab + Pβab

)
Sab(δaI + δbI ), (4.5)

so

δnσI = 1

2

∑

a,b

δPσabSab(δaI + δbI ). (4.6)

Summing up:

δEσ =
∑

a,b

HabδPσab +
∑

i, j

δHσ
i j Pi j =

∑

a,b

HabδPσab +
∑

i, j

1

2
Ki j Si j (ai δn

σ
I + a j nσJ )Pi j

=
∑

a,b

HabδPσab +
∑

i, j

1

2
Ki j Si j

⎛

⎝ai
∑

a,b

δPσabSab
(δaI + δbI )

2

+ a j
∑

a,b

δPσabSab
(δa J + δbJ )

2

⎞

⎠ Pi j

=
∑

a,b

HabδPσab + 1

2

∑

a,b

δPσabSab

⎡

⎣
∑

i, j

ai Ki j Si j Pi j
(δaI + δbI )

2

+
∑

i, j

a j Ki j Si j Pi j
(δa J + δbJ )

2

⎤

⎦

=
∑

a,b

FσabδPσab, (4.7)

with the sought-for effective Hamiltonian, Fσ , given by:

Fσab = Hab + 1

2
Sab

⎡

⎣
∑

i, j

ai Ki j Si j Pi j
(δaI + δbI )

2
+

∑

i, j

a j Ki j Si j Pi j
(δa J + δbJ )

2

⎤

⎦

= Hab + 1

2
Sab

⎡

⎣
∑

i

ai (S̃ P)i i
(δaI + δbI )

2
+

∑

j

a j (S̃ P) j j
(δa J + δbJ )

2

⎤

⎦

= Hab + 1

2
Sab

[
∑

i

ai (S̃ P)i iδaI +
∑

i

ai (S̃ P)i iδbI

]
, (4.8)

where

S̃i j = Ki j Si j . (4.9)

The resulting correction is similar to the formulae presented by Mukhejee [37]
and Kalman [42]. However, unlike Mukherjee, Eq. (4.8) contains summation over all
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orbitals, i , centered on a given atom, I . This is reflected by the terms δaI and δbI . On
the contrary, in Mukherjee’s results these symbols are effectively reduced to δai and
δbi . The result given by Kalman [42] is closer in this respect to ours. However, their
notation is somewhat confusing, leading to the difficult-to-follow numerical prefactor
and sign.

5 Mapping of the SC-EHT to the Hartree–Fock method for derivation of
self-consistency (SC) correction

A more general and significantly more convenient derivation of the correct effective
Hamiltonian for the SC-EHT method can be obtained starting from the conventional
ab initio HF theory. According to such formulation, the total electronic energy of the
system is given by

EHF = 1

2

∑

i, j

Pαi j

(
H0

i j + Fαi j

)
+ 1

2

∑

i, j

Pβi j

(
H0

i j + Fβi j

)
, (5.1)

with the Fock matrix Fσ playing the role of the effective 1-electron Hamiltonian for
spin channel σ and defined as:

Fαi j = H0
i j +

∑

a,b

[(
Pαab + Pβab

)
Ji jab + Pαab Ki jab

]
, (5.2a)

Fβi j = H0
i j +

∑

a,b

[(
Pαab + Pβab

)
Ji jab + Pβab Ki jab

]
. (5.2b)

The integrals Ji jab and Ki jab are defined by:

Ji jab = (i j | ab), (5.3a)

Ki jab = (ib | aj). (5.3b)

The chemists’ notation for molecular integrals, Eq. (5.3), is adopted:

(ab|cd) ≡
(
ψaψb| 1

r12
|ψcψd

)

≡
∫

dσ1d�r1

∫
dσ2d�r2ψ

∗
a (1)ψb(1)

1

r12
ψ∗

c (2)ψd(2). (5.4)

To show that the Fock matrix Eq. (5.2) is, indeed, a proper 1-electron Hamiltonian
that corresponds to the total energy, Eq. (5.1), we consider energy variation in a way
similar to the one already done for the particular case discussed in Sect. 4. Using
definitions Eq. (5.2) in the intermediate step of derivation, we obtain:

δEαH F = 1

2

∑

i, j

δPαi j

(
H0

i j + Fαi j

)
+ 1

2

∑

i, j

Pαi j

⎛

⎝
∑

a,b

δPαab(Ji jab + Ki jab)

⎞

⎠
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+1

2

∑

i, j

Pβi j

⎛

⎝
∑

a,b

δPαab Ji jab

⎞

⎠

= 1

2

∑

a,b

δPαab

(
H0

ab + Fαi j

)
+ 1

2

∑

a,b

δPαab

∑

i, j

[
Pαi j (Ji jab + Ki jab)+ Pβi j Ji jab

]

= 1

2

∑

a,b

δPαab

(
H0

ab + Fαi j

)
+ 1

2

∑

a,b

δPαab

(
Fαi j − H0

i j

)
=

∑

a,b

δPαab Fαab. (5.5)

The standard EHT Hamiltonian is defined such that the energy is given by the
expression:

EEHT =
∑

i, j

Pαi j H E H T,α
i j +

∑

i, j

Pβi j H E H T,β
i j . (5.6)

In many works separation of alpha and beta electrons is not considered, because of
the absence of exchange (and often even Coulomb) terms in the EHT Hamiltonian. To
generalize the EHT methodology, and to facilitate its mapping onto unrestricted HF
theory, we explicitly consider different spin channels.

To obtain the effective Fock matrix that corresponds to the charge-corrected EHT
Hamiltonian, HEHT ,σ , we map Eq. (5.6) onto Eq. (5.1), leading to:

(H0 + Fσ ) = 2HEHT ,σ , (5.7a)

or

Fσ = 2HEHT ,σ − H0. (5.7b)

We remind the reader that H0 in this context has the meaning of the charge-
independent EHT Hamiltonian. Thus, the necessary correction is simply:

�σ = HEHT ,σ − H0. (5.8)

The SC-corrected Hamiltonian is:

Fσ ≡ H̃σ = HEHT ,σ +�σ . (5.9)

Obviously, in the case when the EHT Hamiltonian does not depend on charges,
HEHT ,σ = H0, the correction is zero and the same Hamiltonian, H0, appears in the
eigenvalue problem and in the total energy expression.

The explicit expression for the SC correction of the EHT Hamiltonian based on the
Hoffmann’s rule, Eq. (2.2), and the charge dependence, Eq. (3.1), is then:

�σi j = HEHT ,σ
i j − H0,σ

i j = 1

2
Ki j Si j (hi + h j )
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−1

2
Ki j Si j (h

0
i + h0

j ) = −1

2
Ki j Si j (ai qI + a j qJ ). (5.10)

Hence, the effective 1-electron operator is:

Fσi j = HEHT ,σ
i j +�σi j = HEHT ,σ

i j − 1

2
Ki j Si j (ai qI + a j qJ ). (5.11)

We remind the reader that the Hamiltonian HEHT ,σ
i j in Eq. (5.11) and before is

the charge-corrected EHT Hamiltonian, not the one based on the charge-independent
diagonal matrix elements.

The advantage of the present mapping scheme for derivation of the SC correction
of the charge-dependent EHT Hamiltonians is easy to observe when the elaborate
formula of type Eq. (2.7) are used for computing the EHT Hamiltonian. In this case, the
dependence of the matrix elements on the diagonal terms is non-linear, and application
of the direct density matrix variation, similar to one shown in Sect. 4, is difficult. At
the same time, the formula Eq. (5.8) is much more transparent and easy to apply. We
also note that the result, Eqs. (5.10)–(5.11) is very close to the expression given my
Mukherjee [37], although some differences still exist.

6 SC-EHT as an approximation of the Hartree–Fock method

An alternative and very illuminating look on the SC-EHT method is to assume that
no self-consistency correction is needed and the charge-corrected extended Hückel
Hamiltonian itself plays the role of effective Fock matrix:

H E H T,σ
i j = Fσi j = H0

i j +
∑

a,b

[(
Pαab + Pβab

)
Ji jab + Pσab Ki jab

]
. (6.1)

This interpretation advocates the use of the charge-corrected EHT Hamiltonians
without SC corrections, utilized by various authors. The definition, Eq. (6.1), is more
consistent with the physical meaning of the charge-correction terms—alteration of the
orbital energies as the function of atomic partial charges, rather than alteration of the
total energy, although the latter interpretation can be rather appealing and could be
related to classical charge equilibration principles. In addition, with the interpretation
of the EHT Hamiltonian as Eq. (6.1), the meaning of the slope constants is the same
as in most charge-dependent EHT formulations.

We can now answer the question—“Which particular approximation of the
2-electron integrals, Eq. (5.3), leads to the SC-EHT Hamiltonian?” If we adopt (orbital,
as opposed to energy) interpretation of the EHT Hamiltonian, Eq. (6.1), the form of
charge-dependent EHT Hamiltonian, Eqs. (2.2) and (3.1), can be obtained via the
following approximation:

Ki jab = 0, (6.2a)

Ji jab = f ab
i j Sab, (6.2b)
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f ab
i j = Ki j Si j

((
δI a − n̄ I

N

)
fi +

(
δJb − n̄ J

N

)
f j

)
, (6.2c)

where fi are constants, n̄ I is the reference electron population on atom I, N is the
total number of electrons in the system. Under approximations Eq. (6.2), the Eq. (6.1)
transforms:

Fσi j = H0
i j +

∑

a,b

[(
Pαab + Pβab

)
Ji jab + Pσab Ki jab

]
= H0

i j +
∑

a,b

f ab
i j Sab Pab. (6.3)

Utilizing definition, Eq. (6.2c), the double sum transforms:

∑

a,b

f ab
i j Sab Pab = Ki j Si j

∑

a,b

((
δI a − n̄ I

N

)
fi +

(
δJb − n̄ J

N

)
f j

)
Sab Pab

= Ki j Si j

∑

a,b

δI a fi Sab Pab − Ki j Si j
n̄ I

N
fi

∑

a,b

Sab Pab

+ Ki j Si j

∑

a,b

δJb f j Sab Pab − Ki j Si j
n̄ J

N
fi

∑

a,b

Sab Pab

= Ki j Si j

(
fi

(
∑

a

δI ana − n̄ I

)
+ f j

(
∑

b

δJbnb − n̄ J

))

= Ki j Si j ( fi (nI − n̄ I )+ f j (n J − n̄ J ))

= Ki j Si j ( fiδnI + f jδn J ). (6.4)

where δnI is the excess of the Mulliken (gross) population (not charge) on atom I
with respect to the reference value n̄ I . To summarize:

Fσi j = H0
i j +

∑

a,b

f ab
i j Sab Pab = 1

2
Ki j Si j

(
h0

i +h0
j

)
+Ki j Si j ( fiδnI + f jδn J ). (6.5)

If one chooses fi = 1
2 ai and recalls that δni = −qi , Eq. (6.5) turns into the desired

charge-corrected EHT Hamiltonian:

H SC−E H T,σ
i j = Fσi j = 1

2
Ki j Si j

([
h0

i − ai qI

]
+

[
h0

j − a j qJ

])
. (6.6)

Thus, the utilization of the charge-corrected EHT Hamiltonians for determination
of the eigenvalues, adopted by many authors, is justified. One should keep in mind
that in this situation the energy that is minimized variationally is not the one defined
by Eq. (5.6). The sought-for energy is:

ESC-EHT = 1

2

∑

i, j

Pαi j

(
H0

i j + Fαi j

)
+ 1

2

∑

i, j

Pβi j

(
H0

i j + Fβi j

)
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=
⎛

⎝
∑

i, j

Pαi j H0
i j +

∑

i, j

Pβi j H0
i j

⎞

⎠ − 1

2

∑

i, j

Pi j Ki j Si j (ai qI + a j qJ )

= E0
EHT − 1

2

∑

i, j

Pi j Ki j Si j (ai qI + a j qJ )

= E0
EHT −

∑

i

ai (P S̃)i i qI . (6.7)

Note that in Eq. (6.7) index I is the function of index i : I = f (i) : i ∈ I .
In this section we showed that the SC-EHT can be derived straight from the

HF theory, by neglecting exchange-type integrals, Eq. (5.3b), and by approximating
Coulomb-type integrals, Eq. (5.3a), by the product of pair-wise overlaps:

Ji jab = (ab | i j) = 1

2
Ki j SabSi j

((
δI a − n̄ I

N

)
ai +

(
δJb − n̄ J

N

)
a j

)
. (6.8)

Analysis of Eq. (6.8) reveals explicitly the reasons of potential failures of the SC-
EHT method and rationalizes some of the early modifications of the EHT method,
Eqs. (2.7)–(2.11). First of all, the correct asymptotic of the Coulomb-type integral is
1
R , where R is some measure of the separation of the orbitals. The product SabSi j

behaves as exp(−R), if Slater AOs are utilized explicitly, or as exp(−R) gradually
switching to exp(−R2), if the STO-nGTO approach is used. For the intermediate and
short distances the approximation Eq. (6.8) is acceptable, causing no problems to most
situations. However the incorrect asymptotic behavior can have prominent effect when
long-range electrostatic interactions are important, for example when charge transfer
of electronic polarization over extended spatial region is considered. We also note that
many other methods, typically considered high-level, do often lack the same correct
asymptotic, 1

R , as well, giving advantages over semiempirical methods mostly due to
their short-range description. The asymptotic behavior of the RHS of Eq. (6.8) can be
partially improved by making the constant Ki j distance-dependent. In this regard, the
Calzaferri formula, Eq. (2.8), can be considered one of these types of improvement.
Indeed, utilization of such approximation helped to model excited states [56]—the task
particularly sensitive to long-range interactions. Use of correct asymptotic formulae
for Ki j , for example approximated by Ohno [75], Klopman [76], Mataga [77] terms,
Eq. (6.9), can be advantageous.

Ki j ∼ (ai j + Rn)−1/n . (6.9)

Alternative to the modification of parameters Ki j can be the modification of slope
parameters, such that they introduce dependence on inter-orbital separation of 1

R type.
Specifically, assuming that the following equation holds,

ai = αi +
∑

j

f1(Ri j )α j , (6.10)
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one may naturally incorporate correct asymptotic behavior via functions f1(Ri j ), as
well as introduce dependence of orbital energies not only on the charge of the host
atom, but also on the charges on different atoms.

Finally, we consider the possibility of incorporating exchange effects into EHT, via
re-introducing exchange integral. The 4-orbital, 2-electron integrals, Eq. (5.3), do not
have clear distinction as Coulomb and exchange integrals when expressed in AOs,
in contrast to their definition in MO basis. Therefore, one can utilize the same type
of approximation to Ki jab as that applied to Ji jab, Eq. (6.8), with suitable orbital
index permutation. Re-parameterization of conventional quantities entering the EHT
Hamiltonian definition may be needed.

7 Relation to other methods

In this section we establish connections between the SC-EHT method and two related
methods—the charge equilibration (QEq) method by Rappe and Goddard [78] and the
family of DFTB methods by Elstner and co-workers [48–51]. We start by analyzing
the result, Eq. (6.7). Assuming that parameter Ki j is independent of the orbital indices,
and that the parameter ai is the same for all orbitals centered on a given atom I, ai =
aI ,∀i ∈ I , the energy term −∑

i ai (P S̃)i i qI can be simplified:

−
∑

i

ai (P S̃)i i qI = −K
∑

i

ai ni qI = K
∑

I

qI aI

∑

i∈I

−ni

= K
∑

I

aI qI

(
Z I −

∑

i∈I

ni

)
− K

∑

I

aI qI Z I

=
∑

I

(−K aI Z I )qI +
∑

I

K aI q2
I . (7.1)

The term, Eq. (7.1), has clear interpretation—partial atomic charge qI interacts
attractively with the (effective) core nuclear charge, Z I , and repulsively with itself.
To relate the SC-EHT method to the QEq scheme [78], we consider the energy of a
charged atom. Taylor expansion in atomic charge fluctuations (e.g. partial Mulliken
charges), qI , up to second order yields:

EI (qI ) = EI,0 + ∂E

∂qI
qI + 1

2!
∂2 E

∂q2
I

q2
I . (7.2)

The energy diagram of the atom with different number of electrons is present in
Fig. 1b. Note the difference in definition of the EA and IP quantities (atomic) used in
QEq scheme with respect to the orbital-resolved VSIPs, shown in Fig. 1a.

For the system of N atoms the energy can be written as (up to the second order in
charge fluctuations):

E(q) = E0 +
∑

I

∂E

∂qI
qI + 1

2!
∑

I

∂2 E

∂q2
I

q2
I + 1

2!
∑

I,J
I �=J

∂2 E

∂qI ∂qJ
qI qJ . (7.3)
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Unlike the original QEq scheme, in the SC-EHT method charges are determined
from the orbital occupations, which are obtained by solving self-consistent field equa-
tions. It is the form of energy expression which is similar in the two methods. Com-
paring structure of Eq. (7.3) with that of Eq. (7.1), we can observe a clear similarity
and establish useful relations between proportionality constants used in two methods.
Equation (7.1) disregards all mixed second order derivatives of energy. For the rest of
the terms the relations are straightforward:

E0 = E0
EHT , (7.4a)

(−K aI Z I ) = ∂E

∂qI
≈ 1

2
(I PI + E AI ) = χI , (7.4b)

K aI = 1

2

∂2 E

∂q2
I

≈ 1

2
(I PI − E AI ) = 1

2
JI . (7.4c)

The definition of the Mulliken charges, Eq. (3.2), utilizes well-defined value of
effective core charge, Z I . Therefore, Eqs. (7.4b) and (7.4c) are overdetermined with
respect to the parameter aI . We also remind the reader that this result is obtained under
the assumption ai = aI ,∀i ∈ I and that Ki j = K ,∀i, j . If these requirements are
lifted, one may obtain different set of equations, possibly better determined. Because of
the close connection between the SC-EHT and QEq methods, one may apply the latter
for finding charges, which is efficient even for large systems. The resulting charges
can then be used to construct the charge-corrected effective 1-electron Hamiltonian, to
determine the electronic structure in a non-iterative way. For the described approach
to yield the best accuracy, it is important that the parameters aI , Z I , K on one side
and the parameters JI and χI on the other side are chosen in the most consistent way,
as it is suggested by Eq. (7.4).

Equation similar to Eq. (7.3) appears in theory of self-consistent DFTB methods—
SCC-DFTB [50] and DFTB3 [51]. Namely, the total DFT energy can be approximated
by the Taylor sum in charge density fluctuation, �ρ = ρ − ρ0:

E[ρ] = E0 + E (2) + E (3) + · · · , (7.5a)

E (2) = 1

2

∫
d�r ′

∫
d�r

(
1

|�r − �r ′| + .
δ2 Exc

δρδρ′ |ρ0,ρ0
′
)
�ρ�ρ′, (7.5b)

E (3) = 1

6

∫
d�r ′′

∫
d�r ′

∫
d�r

(
1

|�r − �r ′| + .
δ2 Exc

δρδρ′ |ρ0,ρ0
′
)
�ρ�ρ′�ρ′′. (7.5c)

The second and third order terms are approximated:

E (2) ≈ Eγ ≡ 1

2

∑

A,B

γAB�qA�qB, (7.6a)

and

E (3) ≈ E� ≡ 1

3

∑

A,B

�q2
A�qB�AB, (7.6b)
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The similarity of Eqs. (7.6) with Eq. (7.3) and with Eq. (7.1) become more apparent.
Second-order energy correction, Eq. (7.6a), leads to effective 1-electron Hamiltonian
of form:

FSCC-DFTB
i j = H0

i j + 1

2
Si j

∑

A

(γI A + γJ A)�qA, (7.7)

which can be compared to Eq. (6.6), for example. The major deficiencies of the latter
are the lack of summation over all atomic charges, and the wrong asymptotic form of
Ki j ai . From Eq. (7.7) it is clear that the orbital energies must be corrected not only for
the charge present at the atom containing the orbital, but also on the charges of all other
atoms. This correction to the SC-EHT method can be introduced by approximation
Eq. (6.10), for example. Secondly, the parameters Ki j ai must be chosen to behave
similar to functions γI A, that possess correct 1

R asymptotic. Finally, non-linear charge
corrections terms, which have been reported in some versions of the SC-EHT [8], can
lead to higher-order corrections of the total energy, such as Eq. (7.6b). Therefore, we
identify a close relation and high degree of similarity of SC-EHT-based methods and
the DTFB with self-consistent charge. On the grounds of this comparative analysis, as
well as the analysis of asymptotic behavior and physical interpretation of certain quan-
tities, discussed in previous sections, we suggest that the proper modification of the
original SC-EHT methods can be developed, leading to high-accuracy semiempirical
methods that have their roots in rigorous DFT and wavefunction theories.

Finally, we discuss the relation of the simple EHT scheme and its self-consistent
variant to the high-level ab initio theories. In his fundamental works, Löwdin elabo-
rated a rigorous wavefunction theory that describes many-body interactions in quan-
tum systems [79–81]. Among other important results, the method of configuration
interaction (CI) was presented. Nowadays, the CI family of methods provides very
high accuracy, making wavefunction-based calculations predictive. It is important for
our purposes that, as discussed by Löwdin, variational electronic structure CI calcu-
lations either can be performed using a linear CI Hamiltonian and a large enough set
of basis states, or can be based on a non-linear projected Hamiltonian and a smaller
set of basis states. The advantages of the non-linear equations are questionable in the
straightforward application of the CI method. However, the projected Hamiltonian
formulation provides fundamental grounds for constructing Hamiltonians of the EHT
type that also account for many-body quantum effects. Further improvements of the
EHT and SC-EHT methods can be based on elaboration of the non-linear projected
Hamiltonian derived by Löwdin.

In recent years there have been several works attempting to utilize the ideas sim-
ilar to the one just discussed. Namely, semiempirical methods have been used as a
framework for efficient and accurate calculations on large systems, with the parame-
ters derived from the fitting to the results of correlated calculations on small systems.
This approach is essentially a projection of the CI-based Hamiltonian onto a simple
effective semiempirical-looking Hamiltonian.

Projected Hamiltonians were constructed for fast calculations with the accuracy
comparable to that of correlated wavefunction methods. For example, Rossi and Truh-
lar [82] utilized the neglect of diatomic differential overlap (NDDO) approximation
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as a framework to fit the potential energy surfaces of the Cl+CH4 reactive system.
The parameters were derived from a number of single point calculations along reac-
tion coordinate, as obtained with the MP2 method. The resulting model was able to
describe successfully the points of PESs away from the reaction coordinate.

The Thiel group proposed a transfer Hamiltonian approach. The method originates
from the standard coupled-cluster theory in which the formally exact wavefunction,
|�〉 can be expressed via:

|�〉 = exp(T̂ )|�0〉. (7.8)

|�0〉 is the reference wavefunction, which is typically chosen as the ground state Slater
determinant, and T̂ is the excitation operator. Then, solving the Schrodinger equation
for exact wavefunction |�〉:

H |�〉 = E |�〉, (7.9)

is equivalent to finding orbitals of the reference wavefunction |�0〉, but with the
projected Hamiltonian H̄ :

H̄ |�0〉 = E |�0〉, (7.10a)

H̄ = exp(−T̂ )H exp(T̂ ). (7.10b)

Eventually, the equations can be reduced to the form of Eq. (2.12), but with the
effective Hamiltonian containing correlation and electrostatic effects. Thus, a gener-
alization of the EHT and SC-EHT methods is of broad and fundamental value, since
it roots back to the correlated wavefunction theory. The construction Eq. (7.10b) is
similar to earlier results of Löwdin. The non-linear form of the projected Hamiltonian
can be used as a starting point for further theoretical elaboration of new generations
of the EHT method, with the SC-EHT being among the simplest ones.

Another result found by Löwdin concerns convergence properties of the CI expan-
sions. It was found that the choice of 1-particle orbitals as eigenfunctions of the
density matrix leads to the fastest convergence, such that a single Slater determinant
(HF method) may be an adequate approximation. The result is important for the EHT
and derivative methods, since they all are based on a single Slater determinant wave-
function. This concerns mostly the theoretical formulations rather than the accuracy
and physical interpretation, because of the parametric nature of the EHT and SC-EHT
methods. The choice of orbitals may be compensated by the choice of the parameters.

8 Conclusions

In this work, the SC-EHT method has been analyzed in detail. Construction of a proper
1-electron Hamiltonian operator that variationally minimizes the energy for a given
charge-corrected EHT Hamiltonian has been presented. Simple routes are based on
the mapping of the ab initio HF Fock operator onto the effective EHT Hamiltonian
(energy-based mapping) or onto the effective 1-electron Hamiltonian (orbital-based
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mapping). Both approaches are valid, but their interpretation is different and must
be properly performed when analyzing results or when developing parameterizations
against different types of data (e.g. enthalpies of formation and electronic spectra).

Using the energy mapping, the self-consistency correction is required and can be
easily obtained. Our analysis suggests a much simpler formulation than the one that
can be obtained by application of direct variation with respect to the density matrix.
The convenience of our approach is especially valuable when the matrix elements are
strongly non-linear in atomic charges.

For orbital-based mapping, which is very convenient for analysis and Hamiltonian
construction, the correction is not needed. Instead, the effective 1-electron Hamiltonian
is obtained as a specific approximation of the HF Fock matrix. The approximation
leading to the original SC-EHT method disregards exchange integrals and introduces
incorrect asymptotic behavior of matrix elements as the function of inter-orbital sep-
aration. We discuss earlier approximations in light of their potential to soften the
introduced inaccuracies. Further, we propose possible modifications that would allow
one to achieve correct asymptotic properties and to improve quality of approximations,
bringing the SC-EHT method to a new level of theory. The proposed modifications
are expected to have prominent impact on accuracy of the wavefunction and related
properties, especially for the charge transfer and polarization processes that occur over
extended spatial regions in large-scale systems. The proposed modifications can serve
as the basis for novel accurate and efficient semiempirical methodologies.

We establish connection between the SC-EHT method and its possible extensions
to the QEq method and to the series of DFTB approximations. The relation to the
QEq suggests techniques for avoiding self-consistent charge determination via MO
optimization. Instead, the charges may be obtained directly from the computation-
ally more favorable QEq method and then can be used for non-iterative electronic
structure calculations, provided a suitable mapping between the parameters in the two
techniques is established. The analogy of the SC-EHT with the DFTB-derived meth-
ods emphasizes that the SC-EHT can also be considered an approximation to the DFT
technique, not just a HF method.

We also outline the relation of the EHT and SC-EHT methods to the correlated
wavefunction methods. In particular, we argue that the simple Hamiltonians of EHT
or SC-EHT type may be further elaborated starting from the pioneering works of
Löwdin on non-linear projected Hamiltonians, as exemplified by several recent works
reporting mapping of high-level ab initio calculations on reparameterized semiem-
pirical Hamiltonians of the NDDO form. The improvements along these lines can
also be applied to the significantly simpler EHT and SC-EHT Hamiltonians, leading
to novel, computationally efficient electronic structure calculations of high-accuracy,
applicable to large-scale systems.

To recapitulate, with the above analysis we demonstrate that the SC-EHT derived
Hamiltonians provide rigorous grounds and promising opportunities for constructing
simple, physically transparent, accurate, and efficient semiempirical methodologies
that deserve further exploration.
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